skip to main content


Search for: All records

Creators/Authors contains: "Cufari, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Stars that plunge into the centre of a galaxy are tidally perturbed by a supermassive black hole (SMBH), with closer encounters resulting in larger perturbations. Exciting these tides comes at the expense of the star’s orbital energy, which leads to the naive conclusion that a smaller pericentre (i.e. a closer encounter between the star and SMBH) always yields a more tightly bound star to the SMBH. However, once the pericentre distance is small enough that the star is partially disrupted, morphological asymmetries in the mass lost by the star can yield an increase in the orbital energy of the surviving core, resulting in its ejection – not capture – by the SMBH. Using smoothed particle hydrodynamics simulations, we show that the combination of these two effects – tidal excitation and asymmetric mass-loss – results in a maximum amount of energy lost through tides of $\sim 2.5{{\ \rm per\ cent}}$ of the binding energy of the star, which is significantly smaller than the theoretical maximum of the total stellar binding energy. This result implies that stars that are repeatedly partially disrupted by SMBHs many (≳10) times on short-period orbits (≲few years), as has been invoked to explain the periodic nuclear transient ASASSN-14ko and quasi-periodic eruptions, must be bound to the SMBH through a mechanism other than tidal capture, such as a dynamical exchange (i.e. Hills capture).

     
    more » « less
  2. Abstract

    Periodic nuclear transients have been detected with increasing frequency, with one such system—ASASSN-14ko—exhibiting highly regular outbursts on a timescale of 114 ± 1 days. It has been postulated that the outbursts from this source are generated by the repeated partial disruption of a star, but how the star was placed onto such a tightly bound orbit about the supermassive black hole remains unclear. Here we use analytic arguments and three-body integrations to demonstrate that the Hills mechanism, where a binary system is destroyed by the tides of the black hole, can lead to the capture of a star on a ∼114 days orbit and with a pericenter distance that is comparable to the tidal radius of one of the stars within the binary. Thus, Hills capture can produce stars on tightly bound orbits that undergo repeated partial disruption, leading to a viable mechanism for generating not only the outbursts detected from ASASSN-14ko but periodic nuclear transients in general. We also show that the rate of change of the period of the captured star due to gravitational-wave emission is likely too small to produce the observed value for ASASSN-14ko, indicating that in this system there must be additional effects that contribute to the decay of the orbit. In general, however, gravitational-wave emission can be important for limiting the lifetimes of these systems and could produce observable period decay rates in future events.

     
    more » « less
  3. Abstract Upon entering the tidal sphere of a supermassive black hole, a star is ripped apart by tides and transformed into a stream of debris. The ultimate fate of that debris, and the properties of the bright flare that is produced and observed, depends on a number of parameters, including the energy of the center of mass of the original star. Here we present the results of a set of smoothed particle hydrodynamics simulations in which a 1 M ⊙ , γ = 5/3 polytrope is disrupted by a 10 6 M ⊙ supermassive black hole. Each simulation has a pericenter distance of r p = r t (i.e., β ≡ r t / r p = 1 with r t the tidal radius), and we vary the eccentricity e of the stellar orbit from e = 0.8 up to e = 1.20 and study the nature of the fallback of debris onto the black hole and the long-term fate of the unbound material. For simulations with eccentricities e ≲ 0.98, the fallback curve has a distinct, three-peak structure that is induced by self-gravity. For simulations with eccentricities e ≳ 1.06, the core of the disrupted star reforms following its initial disruption. Our results have implications for, e.g., tidal disruption events produced by supermassive black hole binaries. 
    more » « less